
Optimizing Personalized Retrieval System Based
on Web Ranking

Hao-ming Wang1,3, Ye Guo2, and Bo-qin Feng1

1 School of Electronic and Information Engineering, Xi’an Jiaotong University,
Xi’an, Shaanxi 710049, P.R. China

{wanghm, bqfeng}@mail.xjtu.edu.cn
2 School of Information, Xi’an University of Finance & Economics,

Xi’an, Shaanxi 710061, P.R. China
guoyexinxi@126.com

3 School of I & C, Swiss Federal Institute of Technology(EPFL),
1015 Lausanne, Switzerland

Abstract. This paper drew up a personalized recommender system
model combined the text categorization with the pagerank. The doc-
ument or the page was considered in two sides: the content of the doc-
ument and the domain it belonged to. The features were extracted in
order to form the feature vector, which would be used in computing the
difference between the documents or keywords with the user’s interests
and the given domain. It set up the structure of four block levels in infor-
mation management of a website. The link information was downloaded
in the domain block level, which is the top level of the structure. In the
host block level, the links were divided into two parts, the inter-link and
the intra-link. All links were setup with different weights. The stationary
eigenvector of the link matrix was calculated. The final order of docu-
ments was determined by the vector distance and the eigenvector of the
link matrix.

1 Introduction

Applying the peer-to-peer architectural paradigm to Web search engines has
recently become a subject of intensive research. Whereas proposals have been
made for the decomposition of content-based retrieval techniques, such as classi-
cal text-based vector space retrieval or latent semantic indexing, it is much less
clear of how to decompose the computation for ranking methods based on the
link structure of the Web.

As a user, in order to find, collect and maintenance the information, which
maybe useful for the specific aims, s/he have to pay more time, money and
attention on the retrieval course.

There are many search engines, such as Yahoo, Google, etc. to help the
user to search and collect the information from the Internet. The features of
the Internet, such as mass, semi-structure, have become drawbacks in using the
information widely in Internet.[1]

D. Grigoriev, J. Harrison, and E.A. Hirsch (Eds.): CSR 2006, LNCS 3967, pp. 629–640, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

630 H.-m. Wang, Y. Guo, and B.-q. Feng

In order to make the information retrieval system more efficient, the artificial
intelligence (AI) technologies have been suggested to use. The IR models can be
divided into two items, the one is based on the large scales machine learning,
and another is based on the intelligent personalization.

For the user interested in the special domain, for example, the computer
science or architectonics, it may be a good way to support the results by using
intelligent personalization.

This paper describes the architecture of information retrieval model based
on the intelligent personalization. The aim is to provide the information related
to the given domain. The model receives the request of user, interprets it, selects
and filters the information from Internet and local database according to the
profile of the user. The user profile is maintained according to the feedback of
the user. The pagerank values of documents are computed before they are stored.

This paper is organized as follows: Section 2 introduces the basic concept
of TFIDF and the Pagerank. Section 3 describes the architecture of the new
system. Section 4 discusses the process of re-ranking. Section 5 introduces the
query process. Section 6 discusses the shortcoming and the room for improvement
of the system, and section 7 gives the conclusion.

2 Basic Concept

2.1 TFIDF and Text Categorization

TFIDF (Term Frequency / Inverse Document Frequency) is the most common
weighting method used to describe documents in the Vector Space Model (VSM),
particularly in IR problems. Regarding text categorization, this weighting func-
tion has been particularly related to two important machine learning methods:
kNN (k-nearest neighbor) and SVM(Support Vector Machine). The TFIDF func-
tion weights each vector component (each of them relating to a word of the
vocabulary) of each document on the following basis.

Assuming vector d̃ = (d(1), d(2), ..., d|F |) represents the document d in a vector
space. It is obviously that documents with similar content have similar vector.
Each dimension of the vector space represents a word selected by the feature
selection.

The values of the vector elements d(i)(i ∈ (0, |F |)) for a document d are
calculated as a combination of the statistics TF (w, d) and DF (w) (document
frequency).

TF (w, d) is the number of word occurred in document d. DF (w) is the num-
ber of documents in which the word w occurred at least once time. The IDF (w)
can be calculated as

IDF (w) = log
Nall

DF (w)
.

Where Nall is the total number of documents. Obviously, the IDF (w) were low
if w occurred in many documents and it were the highest if w occurred in only
one.

Optimizing Personalized Retrieval System Based on Web Ranking 631

The value d(i) of feature wi for the document d is then calculated as

d(i) = TF (wi, d) × IDF (wi).

d(i) is called the weight of word wi in document d. [9-12]
The TFIDF algorithm learns a class model by combining document vectors

into a prototype vector C̃ for every class C ∈ Ç. Prototype vectors are generated
by adding the document vectors of all documents in the class.

C̃ =
∑

d∈C

d̃.

This model can be used to classify a new document d′. d′ can be represented
by a vector d̃′ . And the cosine distance between the prototype vector of each
class and d̃′ is calculated. The d′ is belonged to the class with which the cosine
distance has the highest value.

HTFIDF (d′) = argmaxcos(d̃′, C̃).

Where HTFIDF (d′) is the category to which the algorithm assigns document d′.

HTFIDF (d′) = argmax(
d̃′ · C̃

‖d̃′‖ · ‖C̃‖
) = argmax(

|F |∑
i=1

[d′(i) · C(i)]
√

|F |∑
i=1

[d′(i)]2 ·

√
|F |∑
i=1

[C(i)]2
).

2.2 Pagerank

For a search engine, after finding all documents using the query terms, or related
to the query terms by semantic meaning, the result, which maybe a large num-
ber of web pages, should be managed in order to make this list clearly. Many
search engines sort this list by some ranking criterion. One popular way to create
this ranking is to exploit the additional information inherent in the web due to
its hyper linking structure. Thus, link analysis becomes the means to ranking.
One successful and well publicized link-based ranking system is PageRank, the
ranking system used by the Google search engine.

The Google search engine is based on the popular PageRank algorithm first
introduced by Brin and Page in Ref.[6]. The algorithm can be described as:

Let u be the web page. Then let Fu be the set of pages u points to and Bu

be the set of pages that point to u. Let Nu be the number of links from u and
let c be a factor used for normalization (so that the total rank of all web pages
is constant).

R(u) = c
∑

v∈Bu

R(v)
Nv

.

This algorithm displays that the pagerank of page u comes from the pages
that point to it, and u also transfers its pagerank to the pages which it points to.

632 H.-m. Wang, Y. Guo, and B.-q. Feng

Considering the pages and the links as a graph G = P (Page, Link), we can
describe the graph by using the adjacency matrix. The entries of the matrix, for
example pij , can be defined as:

pij =
{

1 Link i → j exists
0 Otherwise.

Here i, j ∈ (1, n) and n is a number of web pages. Because the total probability
from one page to others can be considered 1, the rows, which correspond to pages
with a non-zero number of out-links deg(i) > 0, can be made row-stochastic (row
entries non-negative and sum to 1) by setting pij = pij/deg(i). That means if the
page u has m out-links, the probability of following each of out-links is 1/m. We
assume all the m out-links from page u have the similar probability. Actually,
there is difference among them, and one link maybe more important than others.
We can assume the probability list,

{w1, w2, · · · , wm;
m∑

i=1

wi = 1}.

which can promise the pagerank more precise.
If we considered the property of the adjacency matrix, we could find the

adjacency matrix correspond to a Markov chain.
According to the Chapman-Kolmogorov Equations, for the Markov chains,

we can get

pn+m
ij =

∞∑

k=0

pn
ikpm

kj (n, m ≥ 0, ∀i, ∀j)

If we let P (n) denote the matrix of n − step transition probabilities pn
ij , then

we can asserts that

P (n+m) = P (n) · P (m);

P (2) = P (1) · P (1) = P · P = P 2;

P (n) = P (n−1+1) = P (n−1) · P (1) = Pn−1 · P = Pn.

That is, the n − step transition matrix can be obtained by multiplying the
matrix P by itself n times.

The case discussed above is ideal. For a real adjacency matrix P , in fact,
there are many special pages without any out-link from them, which are called
dangling page. Any other pages can reach the dangling page in n(n ≥ 1) steps,
but it is impossible to get out. The dangling page is called absorbing state. In
the adjacency matrix, the row, corresponding to the dangling page is all zeros.
Thus, the matrix P is not a row-stochastic. It should be deal with in order to
meet the requirement of the row-stochastic.

One way to overcome this difficulty is to slightly change the transition ma-
trix P . We can replace the rows, all of the zeros, with v = (1/n)eT , where eT is

Optimizing Personalized Retrieval System Based on Web Ranking 633

the row vector of all 1s and n is the number of pages of P contains. The P will
be changed to P ′ = P + d · vT . Where

d =
{

1 if deg(i) = 0
0 Otherwise.

is the dangling page indictor. If there were a page without any out-link from it,
we could assume it can link to every other pages in P with the same probability.
After that there is not row with all 0s in matrix P ′. P ′ is row-stochastic. [26]

Because P ′ corresponds to the stochastic transition matrix over the graph
G, Pagerank can be viewed as the stationary probability distribution over pages
induced by a random walk on the web. The pagerank can be defined as a limiting
solution of the iterative process:

x
(k+1)
j =

∑

i

P ′
ijx

(k)
i =

∑

i→j

x
(k)
i /deg(i).

Because of the existing of zero entries in the matrix P ′, it cannot be insure
the existence of the stationary vector. The problem comes from that the P ′ may
be reducible.

In order to solve the problem, P ′ should be modified by adding the connection
between every pair of pages.

Q = P ′′ = cP ′ + (1 − c)evT , e = (1, 1, · · · , 1)T .

Where c is called dangling factor, and c ∈ (0, 1) . In most of the references, the
c is set [0.85,1).

After that, it can be consider that all of the pages are connected (Strong
connection). From one of the pages, the random surfer can reach every other
page in the web. The Q is irreducible. For Q

(k)
ii > 0, (i, k ∈ [1, n]) , the Q is

aperiodic.
Above all, the matrix Q is row-stochastic, irreducible and aperiodic. The

Perron-Frobenius theorem guarantees the equation x(k+1) = QT x(k) (for the
eigensystem QT x = x) converges to the principal eigenvector with eigenvalue 1,
and there is a real, positive, and the biggest eigenvector.

3 Architecture of the System

The goal of this system is to help the users to find the information on Inter-
net easily and quickly. It requests the system should process the information
resource independently, gather the information the users are interested in, filter
the repeating one, wipe off the useless one, and store them to the local database.
This system should be feasible, friendly, adaptable, and transplantable.

The system would not take the place of Yahoo or Google, it will be an en-
trance of personalized search engine. With the interaction between the user and
the system, it will gather the personalized information of the user. Fig.1 shows

634 H.-m. Wang, Y. Guo, and B.-q. Feng

� � � � � 	
 � � � 	 � � � � �

� � � 	 � � �
 	

� � � ! " � " � � #

$! � � � 	 " � "

& ' 	 � !

� � � 	 � (� 	 �

* � � 	 � � � ,

- 	 � � � 	 . �

���

0 1 2 3 4

5 3 6 3 7 3 8 9

: 8 9 ;

< ; 1 = > 4 9

? 3 8 9

@ $ A -

Fig. 1. The architecture of the system

the architecture of the system. The architecture is composed of five components,
local database, and a user profile base. The architecture of the system is de-
scribed in details as follows:[4]

(1) Man-Machine Communication component (MM): this component serves
as the communication interface between the user and the system. The user inputs
the keywords or other kinds of the requests to the system and receives the results
from the interface.

(2) Query Interpret component (QI): this component enhances the user’s
query based on the user profile. Due to the difference of the knowledge and the
domain, not all of the users can express his/her request exactly. As an informa-
tion retrieval system, it should decide what kinds of sources should to be queried,
how to modify the query expression the user has submitted in order to utilize
the underlying search engines more, and how to order the feedback results.

(3) Retrieval component (RE): this component sends the requests and gets
the information from Internet and the local database. There are two expectations
in information retrieval, the precision and the recall. The precision shows the
degree of the feedback results case to the user’s needs. The recall shows the
percentage of the feedback results to the total records, which are related to the
user’s needs. The results from the Internet maybe more general and the results
from the local database maybe more accurate. In this system, the output list
will be combined by the two kinds of results.

(4) Filtering component (FI): this component filters the raw data from the
RE based on the user profile. The feedback results from the Internet are the raw
data according to the keywords and query expression. They cannot meet the
user’s needs satisfactorily. This component filters the results according to the
domains or the subjects the user interested. The related data of user’s feature
and the domain have been stored in the User Profile Base.

Optimizing Personalized Retrieval System Based on Web Ranking 635

(5) Analysis & Synthesis component (AS): this component uses the filtered
information to enhance decision making, uses data mining techniques and the
user profile to analyze and synthesize the information retrieved.

(6) User Profile Base (UPB): a knowledge base for the users. There are two
kinds of forms.

– The one is the holistic user profiles for all the users of a system; this concep-
tual profile base can either be distributed across the system or stored in a
central location, the holistic user profile consists of a personal profile, a func-
tional area profile, a current project profile, an organizational environment
profile, and a client-type profile.

– Another is the storing feature or the visiting model of the specifically kind of
the user. The initial data are set by manual. When the user visits the Inter-
net, the historical pages are recorded and downloaded. The system extracts
the information from the pages, extracts the class keywords, and constructs
the vector of every page. The distance between the page vector and the do-
main vector is calculated. According to the distance, the user’s personalize
model is built. This model will be refined based on the feedbacks the user
interested.

(7) Local Database (LD): it stores the data, which have been downloaded
from the Internet according to the historical pages. Most of the knowledge on
Internet are non-structure or semi-structure. They are different from the data
stored in the local relational database. Most of the non-structure and semi-
structure data are organized as the natural language model. Those data should
be converted before they are stored to the relational database, after that, they
can be shared and utilized effectively.

4 Re-ranking the Pages

In this section, we introduce two kinds of calculation used in this system. The
first is the similarity computing of the vector, and the second is the pagerank
re-computing.

4.1 Extracting Keywords

In our system, we should select the keywords from the given domain. In the tra-
ditional algorithm of text categorization or recommender system, all the terms
(words) are considered, and the importance of each term is decided by the num-
bers of it appeared in the documents. But actually, some terms in a given domain
maybe more important than the others.

The Ref.[9][15] introduces a new weighting method based on statistical esti-
mation of the importance of a word for a specific categorization problem. This
method also has the benefit to make feature selection implicit, since useless
features for the categorization problem considered get a very small weight. Ex-
tensive experiments reported in the paper shows that this new weighting method

636 H.-m. Wang, Y. Guo, and B.-q. Feng

improves significantly the classification accuracy as measured on many catego-
rization tasks.

In our system, the method can be described as selecting the top−n keywords
from the paper set, which have been categorized in manual, by calculating the
weight of every word.

We donated the keywords list with the vector:

D̃i = {(kj , wj), j ∈ (1, m)}, i ∈ (1, n)

Where n is the numbers of domains, m is the numbers of keywords in a given
domain, (kj , wj) is the keyword and its weight in the given domain, and D̃i is
the vector of the domain Di. The detail can be found in the Ref.[16].

Similarly, we denote the document d with the vector d̃:

d̃i = {(kj , wj), j ∈ (1, m)}, i ∈ (1, n)

Where n is the numbers of documents, m is the numbers of keywords in a given
domain, (kj , wj) is the keyword and its weight in the given document, and d̃i is
the vector of the document di.

In the next section, we will replace the domain D, the document d with the
corresponding vector D̃ and d̃.

4.2 Downloading Links

According the log file of the server, we can get the visiting queue. In this section,
we will download the links between the pages in domain level. In Fig.2, we
divide the information management into 4 block levels. They are, 1st: pages;
2nd: Directories. Such as http : //liawww.epfl.ch/Research; 3rd: Host. Such as
http : //liawww.epfl.ch; 4th: Domain. Such as http : //www.epfl.ch.

������

��	
�

��
���

��	���
�

Fig. 2. Levels of Information Management

The Ref.[14] points out that in order to get the best performance, the block
level should be set at host. We download the links in domain level in order to
calculate the pagerank in host level. We should set up a crawl to download the
links. The Ref.[17] showed how to set up and manage the crawls.

Optimizing Personalized Retrieval System Based on Web Ranking 637

4.3 Setting Up the Link Matrix

In section 2.2, we introduce the calculating of pagerank, which is used by Google.
In the algorithm, the entry pij = 1 when the link i → j exists. The

Ref.[5][7-8][13-14]drew the methods to improve the effects of calculating.
In our system, we consider the host as a block level. The out-links can be

divided two parts: the intra-links and the inter-links. The former one mean that
the pages linked to and from are belonged to the same host. Otherwise they are
belonged to the latter one.

The weight of two kinds out-link are different. We assume the total weight of
all out-link pages is 1. All the intra-links share the 3/4 weight, and all inter-links
share the 1/4 weight. The link matrix P will be changed to:

pij =

⎧
⎨

⎩

3
4∗dig(intra) i, j ∈ Hm;

1
4∗dig(inter) i ∈ Hm, j ∈ Hn, m �= n;
0 Otherwise.

The P should be dealt with just fellow the steps discussed above to P ′′(or Q)
in order to promise Q(k) converge and have a real, positive and the biggest
eigenvector.

4.4 Re-ranking

In the local database, there are: (1)the pages downloaded from the website ac-
cording to the log file, (2) the vectors of the pages and the domains, (3)the
relating link information of the website. There are two lists, (1)the order of the
pages, which related to the difference between domain’s and page’s vector , and
(2)the importance (or probability) of the pages in the given domain.

In this section, we combine the list(1) and (2) in order to adjust the order of
the pages stored in local database.

score(d) = α ∗ sim(d̃, D̃) + (1 − α) ∗ PR(d).

Where d is the page stored in local database, α ∈ (0, 1) is the adjust factor,
PR(d) is the Pagerank of d, and sim(d̃, D̃) is the difference between the page d

and the domain D̃.
The result of the computation is a new order list of the pages, which will be

stored in local database, too.

5 Query Process

In this section, we introduce the query process.

(1) Extracting the domain vectors
We use the Open Directory Cluster as the reference. We assume there are m

domains. For each domain, we select n papers related to the domain in order to
obtain the vector D̃i(i ∈ (1, m)) of given domain. Obviously, the work should be
done once only.

638 H.-m. Wang, Y. Guo, and B.-q. Feng

(2) Login
This system will be an entrance of personalized search engine. If the user

wanted to apply the service, he should register and submit the basic information
of himself. The system will create a new user profile in order to record the habit
of the new user. If the use wanted not to register, he could visit the Internet
freely.

(3) Submitting the keywords
Just as the description in Fig.1, the MM component receives the keywords

k and modifies them according to the user’s profile. It will do nothing when
the user entered the system in the first time. The QI component will submit the
keywords to the search engine directly. But in the other times, the QI component
will compute the two kinds of difference:

– between k and the domain vector D̃i. The m nearest neighbors have the
most probability of the keywords belonged to. Assuming the domain list is
Dca = {D̃k1, D̃k2, · · · D̃kl, (kl ≤ m)} .

– between k and the document vectors d̃i, d̃i ∈ D̃i(D̃i ∈ Dca).

The RE component will list all the top − n pages of every domain D̃i(D̃i ∈
Dca) stored in local database. Meanwhile, the RE will send the keywords to the
search engine.

All of the results (pages, documents) will be order by the FI component in
order to output. The user can select the pages he was interested in, and the log
file will record it simultaneity.

(4) Maintaining the Use Profile and Local database
After the user logout, the system will download the link information of the

domain (Show in Fig.2) and the pages, which the user has visited. All of the
computation will be done by the AS component, and the local database and
user profile will be maintained.

6 Shortcoming and Room for Improvement

There are two sides need to be improved, the feature extraction and the pagerank
computation.

In our system, we use the traditional algorithm to extract the features of the
document and the domain. The feature is the word appeared in the document.
Just as we know, in a given document. There are many words have a more
importance or have a bigger weight than others do. In this algorithm, we do not
consider this condition.

We simulate the pagerank algorithm just as the Google did. Different from
the real computation, we centralize the pagerank among the domain, the 4th

block level. We hardly consider the influence from and to other domains. It
makes the warp from the real one. This model may not respond to the real
importance from the link view.

For the pagerank computing, two questions are put forward in Ref.[5]. One
is that a page may correlative with the given subject, but might not contain

Optimizing Personalized Retrieval System Based on Web Ranking 639

the keywords of query. It makes the page failed to be select by the query. The
other question is that some websites might contain a lot of hyperlinks or had a
high pagerank, but it might be less correlative with the keywords. The Google
claimed that the second problem had been solved. But we have not found the
report about how to do that in recent papers.

For the SVM method, it is effective when the pages have one kind of schema.
There are many kinds of mass, business information in Internet, and they are
arranged in another way different from those pages of science and technology.
For those pages, another method should be developed, which includes the infor-
mation analysis, storing and issuing, too.

7 Conclusion

This paper discussed the disadvantages, which could not provide the personalized
service, of the current search engines. It drew up a new personalization model,
which combine the text categorization with pagerank computation.

The keywords of the given domain and the documents were extracted in order
to form the vectors, which will be used in text categorization. The links of the
domain, which in the top of the block level of a website, were downloaded. The
model changed the weight of the link in order to distinguish the intra-links and
the inter-links of a host. The pagerank was computed, and it was combined with
vector difference to form the order list of the page in the given domain.

In the last paragraph, it pointed out that there were some problems should
be solved in order to make the retrieval results more veraciously.

Acknowledgements

This work was supported by project 2004F06 of Nature Science Research of
Shaanxi Province, P.R. China.

References

1. WANG Ji-Cheng, et al. State of the Art of Information Retrieval on the Web.
Journal of Computer Research & Development. Vol.382001(2)pp.187-193.

2. James Kempf. Evolving the Internet Addressing Architecture. Proceedings of the
2004 International Symposium on Applications and the Internet (SAINT’04).

3. D.Rafiei, A.Mendelzon. What is this page known for Computing web page reputa-
tions. In 9th International World Wide Web Conference, Amsterdam, Netherlands,
May 2000.

4. Neal G. Shaw, et al. A comprehensive agent-based architecture for intelligent in-
formation retrieval in a distributed heterogeneous environment. Decision Support
Systems 32 (2002) pp.401-415.

5. R.Lempel, S.Moran. The stochastic approach for link-structure analysis (SALSA)
and the TKC effect. In 9th International World Wide Web Conference, Amsterdam,
Netherlands, May 2000.

640 H.-m. Wang, Y. Guo, and B.-q. Feng

6. L. Page, S. Brin, R. Motwani, T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Stanford Digital Libraries Working Paper, 1998.

7. T. Haveliwala. Efficient computation of PageRank. Technical report, Computer
Science Department, Stanford University, 1999.

8. Wenpu Xing, Ali Ghorbani. “Weighted PageRank Algorithm,” cnsr, pp. 305-314,
Second Annual Conference on Communication Networks and Services Research
(CNSR’04), 2004.

9. Pascal Soucy,Guy W. Mineau. Beyond TFIDF Weighting for Text Categorization
in the Vector Space Model. In proceeding of IJCAI-05. pp.1136-1141.

10. Gongde Guo, Hui Wang, et. al . An kNN Model-Based Approach and Its Applica-
tion in Text Categorization. In Proceeding of CICLing 2004: 559-570.

11. Ralf Steinberger, Bruno Pouliquen, Johan Hagman. Cross-Lingual Document Sim-
ilarity Calculation Using the Multilingual Thesaurus EUROVOC. In Proceedings
of Computational Linguistics and Intelligent Text Processing (CICLing 2002). pp.
415-424.

12. LI-PING JING, HOU-KUAN HUANG. Improved feature selection approach tfidf
in text mining - Machine. In Proceedings of the First International Conference of
Machine learning and Cybernetics, 2002. pp.944-946.

13. Monica Bianchini, Marco Gori, Franco Scarselli. Inside Pagerank. ACM Transac-
tions on Internet Technology. Vol.(5), No.1,2005(2). pp. 92-128.

14. Xue-Mei Jiang, Gui-Rong Xue, Wen-Guan Song, Hua-Jun Zeng, Zheng Chen, Wei-
Ying Ma. Exploiting PageRank at Different Block Level. In Proceedings of WISE
2004. pp. 241-252.

15. B. Arslan, F. Ricci, N. Mirzadeh, A. Venturini. A dynamic approach to feature
weighting. In Proceedings of Data Mining 2002 Conference.

16. Thorsten Joachims. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF
for Text Categorization. In Proceedings of the Fourteenth International Conference
on Machine Learning table of contents(ICML). 1997. pp.143 - 151.

17. http://www.searchtools.com/robots/robot-code.html

	Introduction
	Basic Concept
	TFIDF and Text Categorization
	Pagerank

	Architecture of the System
	Re-ranking the Pages
	Extracting Keywords
	Downloading Links
	Setting Up the Link Matrix
	Re-ranking

	Query Process
	Shortcoming and Room for Improvement
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

